
Essbase

Optimization
Flash Back Friday!!

Kevin Cox

Who Am I?

 Kevin Cox

 Essbase (Arbor/Hyperion/Oracle) since 1996

(4.1.2)

 Work

 BDalton Software Etc 1986-1993 (“Gamestop 1.0”)

 Target Corp 1993-2000

 EPM consultant 2000-2011

 Lennox Intl 2011-curr

 NTxHUG

Kscope Plug

 If you are employed doing

Hyperion/Essbase/Oracle, you NEED to go

 Presentations about solutions, by the solver

 Real industry experts (consulting and client)

 I “sell” it to management as my CPE need

 Casual conversations priceless

 Never had issue with getting near instant

payback on Kscope investment

What is Essbase

 Extended SpreadSheet dataBASE

 Developed in early 1990s

 “Dimensions”

 Following new database concept of
OLAP

 Data arranged in an array of “Blocks”

 Later “short-hand”: Block Storage Option-
BSO

 For this presentation: “Essbase” = BSO

Essbase: Truths

 Unique database storage

 Works in specific order

 Excels at math, “can” do logic

 Needs data in memory to work on it

 Highest processing “cost” is I/O time

 Finding

 Loading

 Writing

An Extended Spread Sheet

 Think of an Excel workbook

 You can’t just pull cell A1 into memory

 When opened, it requires computer memory

 Calculations referencing other cells in same

workbook are fast

 References to external books take more time

 You have many similar, but slightly different

workbooks (months, products, years, etc)

Storage: Dense
 “high probability that one or more cells is

occupied”

 Dense considerations
 highly populated

 calculations (Ratios, variances, etc)

 Heavily relevant (one value implies another)

 Populated at once (if possible)

 Relatively static (not constantly adding new)

 Once Dense dims defined, ALL blocks are defined
by that exact definition (none bigger nor smaller)

 Guideline: 8k-64k block size, 2-3 dims (based on
1990s computers)

Storage: Dense

 Blocks are RARELY (never) 100% populated

 >50% good, ~20% common

 Essbase uses “#Missing” (relational “NULL”)

 Essbase compresses empty space out of

block before writing to disk

 Helpful, but troublesome (a trademark)

Storage: Dense

 In memory, blocks are fully expanded

(“block size”)

 Blocks need to be loaded to memory ANY

time referenced

 Retrieved

 Calculated (also referenced in calculation)

 Updated

 Block size impacts remote access

Storage: Sparse

 All potential blocks are determined by

members in sparse dimensions (including

ancestors) and all are given a unique

serial number (“shared” members don’t

count)

 Essbase does all processing in block

number order

Storage: Sparse

 Sparse dimensions define individual blocks

 Potential blocks frequently in the 1010+

range

 “Existing blocks” usually in single digit %

 Index files (*.ind) are a guide to where

block are located

An Extended Spread Sheet

 Dense dimensions define size of the

“workbook” definition (rows/cells/sheets)

 Sparse dimensions ultimately create

different, multiple workbooks

 Sparse combinations are “file names”

Storage: Block Numbering

 Outline order

 First block is lev0 of each sparse

 2nd block is second member of first listed

dimension

 Reason for “hourglass”

Storage: Visual

Sample: Basic

Fragmentation
 “Fragmentation” is any blocks out of

sequence on disk

 Inevitable Causes

 Aggregation

 Loading from multiple sources

 Periodic loads*

 Preventable Causes

 Bad load sequencing

 Derived values stored in dense

 Periodic loads*

Storage Compression

Calculation
 Without other instructions, calculation runs on block

calculations in block order for all existing “dirty”
blocks

 Top Down / Bottom Up

 Housekeeping

 “Smart Calc”/”Update Calc”/”UPDATESTATUS”

 Dense Order

 FIX (emptyset)

 Member calc

 Limit limit limit

 Block creation issue

 Datacopy

Calculation
 Assuming “Net Sales” has a member formula

in outline

 “Gross Sales” – “Discounts”

 Calc script could be as simple as

“Net Sales;”

 Alternately, formula in calc script

 “Net Sales” = “Gross Sales” – “Discounts”

 Best practice is to get logic in outline (not
“buried” in a calc script)

 …and dynamic

Calc Script member

calculation

 any logic not simply “a = b + c” has to be in a
“member calculation block”

 A (If B > C

 A = B – C;

 Else

 A = C – B;

 EndIf)

 All functions, logic, etc, USUALLY need to be in
a logic block

Calc Script calculation

 Almost anything possible in block

 Functions

 “Cross dims” on both sides

 Not possible…

 Calc Script Procedural functions (FIX,

Datacopy)

 Make sure Block member exists

CELL/BLOCK (d)

TOPDOWN/BOTTOMUP (s)

 BLOCK: Faster, default order, at once, but

requires no dependence

 CELL: Slower, cell-by-cell

 BOTTOMUP: Faster, follows outline order

 TOPDOWN: Slower, more deliberate

PARALLELCALC/TASKDIMS

 Default mode is single lane, one processor

 Splits work into multiple lanes, for multiple

processors

 Uses bottom dimension to split

 TASKDIMS allows more dimensions in split

calculation

Calc All

 Simplest calculation is using Essbase’s

“Calc All” function

 Calculates all dimensions

 Member formulas

 Aggregation properties

 Frequently more than needed

 Could be not enough if “Intelligent calc”

 “Should” get everything

Calc vs Agg

 “Calc All” / “Calc Dim” runs calculations

on dimensions listed, including

aggregation

 “Agg” only looks at Agg properties

 MUCH faster

 does NOT do member calcs

AGG(“Market”, “Product”);

Intelligent Calculation

 “Dirty” blocks

 Blocks that have been updated

 Intentions are pure

 Difficult to manage

Housekeeping

 SET AGGMISSG

 SET UPDATECALC

 CLEARUDPATESTATUS

 SET MSG (ONLY)

 SET EMPTYMEMBERSETS

Housekeeping: AGGMISSG

 SET AGGMISSG ON

 Assumes all data is loaded at lowest level

 Benefit: Database doesn’t have to “look”

before aggregating

 Optimization: HIGH

Housekeeping: UPDATECALC

 Dirty Blocks

 Great concept, hard to control

 Tends to result in not enough calculation

 Therefore, usually “OFF”

 Also turn off “CLEARUPDATESTATUS”

Housekeeping: MSG

 During development, use “SET MSG ONLY”

to get loose guideline for speed

 After implemented, SET MSG SUMMARY is

common

Control Flow: FIX/EXCLUDE

 Calculation runs through all blocks, unless
limited

 FIX/EXCLUDE limits dimensions to fewer
members

 If member not found, ALL members
calculated

 Use EMPTYMEMBERSETS

 Encouraged to have a separate FIX for
each dimension

FIX (cont)

 Will limit dimensions where member

present, otherwise “ALL”

 Can be Nested, with caution

 Further Fix on same dimension sometimes

causes issues

FIX(@IDESCENDANTS(“Period”))

 FIX(“Jan”)

FIX (cont)
FIX(@CHILDREN(“EAST”),

 @RSIBLINGS(“FY19”))

 (calculations)

ENDFIX

FIX(@CHILDREN(“EAST”))

 FIX(@RSIBLINGS(“FY19”))

 (calculations)

 ENDFIX

ENDFIX

Math vs Logic

Essbase CAN do logic, but it is MUCH faster

to do math

1. If(Act==0) Act=#Missing; Endif

2. Act = Act * Act/Act;

(credit: Roske--leverages 0/#Missing math)

 Ex 2 is multiples faster than Ex 1 (10x?)

 Boolean values…True = 1, False = 0

Clean up Fragmentation

 “Block adjacency ratio”

 Dense Restructure

 Remove zeros in database

 Export all/clear/reimport

CLEARDATA/CLEARBLOCK

 CLEARDATA mbrname sets values to #mi

 Can’t be used in IF statement

 Mbrname = #Missing

 Block not deleted

 CLEARBLOCK type sets values to #mi AND

evaluates full block for deletion

FIX SPARSE/CALC DENSE

 Old Essbase Saying

 FIX primarily benefits limiting Sparse

dimensions

 However, shows SOME improvement on FIX

on Dense

 CALC can be used on Sparse, but

logically fits better with

Dense/Accounts/Period

Block Creation Issue

 Calc only runs on existing blocks,
therefore 99x faster than running on ALL
potential (thanks Essbase!!)

 …but calc, by definition, creates new
data

 If calc needed to create a new block, this
in NOT default functionality

 Example: “Currency” is sparse

 “USD” = “EUR” * ExcRate;

CREATE

 CREATEBLOCKONEQ

 Can create blocks if needed

 Slow, because it isn’t just calculating

 Procedural

 CREATENONMISSINGBLK

 Slower functionality due to logic required

 Be careful

 @ALLOCATE

DATACOPY

 My preference: Datacopy

 Copies all data from source to target

 Including #Mi values (and #Mi blocks)

 Helps with Block Creation issue

 Assuming properly limited via FIX, provides

better control

 Example: Datacopy EUR to USD, and then

fix on USD and calculate

Dense Design

 Best Practice: ONLY store loaded data

 All derived data should be dynamic

 Ratios/Variance/Two Pass dynamic

 Test block sizes/cache size

 As low as 2kb, as high as 800+kb

 Test calculations with SET MSG ONLY;

Sparse Design

 Think about what dimensions you may
limit via FIX, place FIXed dims low

 Keep in mind disk organization

 Place non-agg dims low

 80/20 on rollups

 Make the most used rollup the primary
rollup

 Alternate rollups…consider dynamic

General Outline

 Reduce Interdimensional Irrelevance

 Make sure most of your member from each

dimension relate to most in other

dimensions

 Example: Entity Income Statement app, lots

of entities, lots of accounts

 Add a “truck” dimension with 1000+ trucks

that keeps track of mileage and gas

Essbase Optimization

 Questions / Comments

Implied Share

 Created when parent has one child

 Results in ONE “bucket” being created

(instead of two)

 “NEVER SHARE” member setting

 “IMPLIED_SHARE” config setting

